Case 2: Testing a Claim About a Mean μ: Small Sample (N<30)

A. **REJECTION REGION METHOD**

1. **State the Null Hypothesis H_0**
 - This is a hypothesis that must contain a statement of equality, such as \leq, $=$, or \geq.

2. **State the Alternative Hypothesis H_a (some texts use H_1)**
 - This is the complement of the null hypothesis; i.e., it must be true if H_0 is false.
 - This hypothesis must contain a statement of inequality, such as $<$, \neq, or $>$.

3. **Specify the Level of Significance Alpha (α)**
 - The probability of rejecting the null hypothesis when it is true.

4. **Find the degrees of freedom ($df=N-1$)**

5. **Decide whether the test is left-tailed, right-tailed, or two-tailed.**
 - If the alternative hypothesis contains:
 - $<$ it is a left-tailed test
 - \neq it is a two-tailed test
 - $>$ it is a right-tailed test

 HINT: The inequality symbols ‘$<$’ and ‘$>$’ point to the rejection region.

6. **Find the Critical Value(s)**
 - This is the value that separates the rejection region from the non-rejection region.
 - **Using a 't' distribution table**, go to the row with $n-1$ degrees of freedom, and then go over to the column heading that contains both the type of tail and the level of significance α. **That number is the critical value.**
 - If the hypothesis test is left-tailed, make the critical value negative; if right-tailed, positive. If the test is two-tailed, create duplicate critical values, one positive and one negative.

7. **Sketch the Normal Distribution**
 - Add the critical value(s), and shade in the corresponding rejection region. To the right is an example of a two-tailed test.
8. Calculate the Test Statistic*

\[t = \frac{\bar{x} - \mu}{s / \sqrt{n}} \]

Determine where \(t \) is located in relation to the rejection region identified in the previous step.

*If \(\sigma \) is known, and the underlying distribution is normal (or assumed normal), then use the normal distribution with:
\[z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \]
proceeding as if there was a large sample >30.

Though this case is relatively rare, the student should be aware of its impact.

9. Make a Decision

If \(t \) is in the rejection region, make a decision to ‘Reject \(H_0 \)’. If \(t \) is outside the rejection region, make a decision to ‘Fail to Reject \(H_0 \)’.

10. Restate the Decision in Non-Technical Terms

If the original claim contained the condition of equality (\(=, \leq, \geq \)), and:

a. you failed to reject \(H_0 \), it should be stated similar to the following: “There is not sufficient evidence to warrant rejection of the claim that … (original claim)”

b. you rejected \(H_0 \), it should be stated similar to the following “There is sufficient evidence to warrant rejection of the claim that … (original claim)”

If the original claim contained the condition of inequality (\(\neq, <, > \)), and:

a. you rejected \(H_0 \), it should be stated similar to the following: “The sample data support the claim that … (original claim).”

b. you failed to reject \(H_0 \), it should be stated similar to the following “There is not sufficient sample evidence to support the claim that … (original claim)”
B. **P-VALUE METHOD**

Unlike the Z distribution table, the t distribution table will not give us a P-value. This is because the t distribution table includes only selected values of the significance level \(\alpha \). The most practical way to find the P-value is to use the TI-83/84 method as described in the next section.

C. **TI-83/84 METHOD**

1. **Determine the Null Hypothesis \(H_0 \), Alternative Hypothesis \(H_a \), and Significance Level \(\alpha \).**

2. **Determine critical values from t distribution table**

 Example: \(\alpha = .05; \mu_0 = 64.8, n=12; \bar{x} = 59.8; s=8.7, df = n - 1 = 11 \)

 From the table, using \(df = 11, \alpha = .05 \), two-tailed test yields critical values of -2.201 and +2.201

3. **Press STATS**

4. **Select TESTS, then choose second option of T-Test**

 a) Input: **Data** (Use if your data resides in lists on the calculator) or **Stats** (Use if you just have summary stats such as \(\sigma \) and \(\mu \))

 b) Enter Null Hypothesis value \(\mu_0 \)

 c) Enter sample mean \(\bar{x} \), sample standard deviation \(S_x \), and sample size \(n \)

 d) Enter alternative hypothesis (\(\mu \neq \mu_0; \mu < \mu_0; \mu > \mu_0 \))

 e) After steps a-d, press **Calculate**. Results are below.

 ![TI-83/84 Screen Shots]

 Interpretation from above TI-83/84 screen shots:

 1. **P test:** \(P = .072 \)

 If \(\alpha = .05 \), then \(P > \alpha \), which means **do not reject** the null.

 2. **Rejection Region Method:** For two-tailed test, the critical values are \(\pm 2.201 \) significance level of .05. Since \(t = -1.991 \) is between -2.201 and +2.201 (zero is in the middle), it is **not** in the rejection region, so **do not reject** the null.
Sample Exercise

Test the claim that $\mu > 165$ given a sample of $n = 7$ for which $\bar{x} = 252.7$ and $s = 27.26$. Use a significance level of .01

<table>
<thead>
<tr>
<th>Rejection Region Method</th>
<th>TI-83/84 Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Null: $\mu \leq 165$</td>
<td>Null: $\mu \leq 165$</td>
</tr>
<tr>
<td>Step 2: Alternative: $\mu > 165$</td>
<td>Alternative: $\mu > 165$</td>
</tr>
<tr>
<td>Step 3: $\alpha = .01$</td>
<td>$\alpha = .01$</td>
</tr>
<tr>
<td>Step 4: Critical Values: From the t distribution table, using $df=6$, $\alpha=.01$, and right-tailed test, the critical value is $+3.143$</td>
<td>From the t distribution table, using degrees of freedom =6, $\alpha=.01$, and right-tailed test, the critical value is $+3.143$</td>
</tr>
<tr>
<td>Step 5: Test Statistic</td>
<td>Press STAT, Select TESTS; choose second option T- Test; input the data; Press Calculate</td>
</tr>
<tr>
<td>$t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$</td>
<td>$t = \frac{252.7 - 165}{27.6/\sqrt{7}} = 8.407$</td>
</tr>
</tbody>
</table>
| **Step 6:** Since $t= 8.407$ is in the rejection region (> 3.143; see Step 4), the decision is to reject the null. | Since $t= 8.407$ is in the rejection region (> 3.143; see Step 4), the decision is to reject the null. Also, the P-value is 0.000078, which is much less than α of 0.01. Therefore, this is a second reason to reject the null hypothesis.