Case 3: Testing a Claim About a Proportion \(\rho \)

A. REJECTION REGION METHOD

1. State the Null Hypothesis \(H_0 \)
 This is a hypothesis that must contain a statement of equality, such as \(\leq, =, \) or \(\geq \).

2. State the Alternative Hypothesis \(H_a \) (some texts use \(H_1 \))
 This is the complement of the null hypothesis; i.e., it must be true if \(H_0 \) is false.
 This hypothesis must contain a statement of inequality, such as \(<, \neq, \) or \(> \).

3. Specify the Level of Significance Alpha (\(\alpha \))
 The probability of rejecting the null hypothesis when it is true.

4. Decide whether the test is left-tailed, right-tailed, or two-tailed.
 If the alternative hypothesis contains:
 - \(< \) it is a left-tailed test
 - \(\neq \) it is a two-tailed test
 - \(> \) it is a right-tailed test

 HINT: The inequality symbols ‘\(<\)’ and ‘\(>\)’ point to the rejection region.

5. Find the Critical Value(s)
 This is the value that separates the rejection region from the non-rejection region.
 It is a \(z \) score that for a
 - left-tailed test is the negative \(z \) score that corresponds to an area of \(\alpha \)
 - right-tailed test is the positive \(z \) score that corresponds to an area of \(1 - \alpha \)
 - two-tailed test corresponds to the areas of \(\frac{1}{2} \alpha \) and \(1 - \frac{1}{2} \alpha \)

SOME COMMON CRITICAL Z SCORES

<table>
<thead>
<tr>
<th>Alpha ((\alpha))</th>
<th>Tails</th>
<th>Critical Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>2</td>
<td>(+1.96, -1.96)</td>
</tr>
<tr>
<td></td>
<td>LEFT</td>
<td>(-1.645)</td>
</tr>
<tr>
<td></td>
<td>RIGHT</td>
<td>(+1.645)</td>
</tr>
<tr>
<td>.01</td>
<td>2</td>
<td>(+2.58, -2.58)</td>
</tr>
<tr>
<td></td>
<td>LEFT</td>
<td>(-2.33)</td>
</tr>
<tr>
<td></td>
<td>RIGHT</td>
<td>(+2.33)</td>
</tr>
</tbody>
</table>

Document created by South Campus Library Learning Commons 03/26/10. Permission to copy and use is granted for educational use provided this copyright label is displayed.
6. **Sketch the Normal Distribution**
 Add the critical value(s), and shade in the corresponding rejection region. Below is an example of a two-tailed test.

 ![Normal Distribution Diagram](image)

7. **Calculate the Test Statistic**
 \[z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \]

 Determine where Z is located in relation to the rejection region identified in the previous step.

8. **Make a Decision**
 If Z is in the rejection region, make a decision to ‘Reject \(H_0 \)’. If Z is outside the rejection region, make a decision to ‘Fail to Reject \(H_0 \)’.

9. **Restate the Decision in Non-Technical Terms**
 If the original claim contained the condition of equality (\(=, \leq, \geq \)), and:
 a. you failed to reject \(H_0 \), it should be stated similar to the following: “There is not sufficient evidence to warrant rejection of the claim that … (original claim)”
 b. you rejected \(H_0 \), it should be stated similar to the following “There is sufficient evidence to warrant rejection of the claim that … (original claim)”

 If the original claim contained the condition of inequality (\(\neq, <, > \)), and:
 a. you rejected \(H_0 \), it should be stated similar to the following: “The sample data support the claim that … (original claim).”
 b. you failed to reject \(H_0 \), it should be stated similar to the following “There is not sufficient sample evidence to support the claim that … (original claim)”
B. **P-VALUE METHOD**

The steps to conduct the hypothesis test for the mean using P-values are similar to the traditional method previously discussed, with the main difference that we will be comparing our P-value to the level of significance rather than comparing a test statistic to a rejection region. The test statistic is still required, however, since it determines the size of the tail, which in turns determines the value of P.

1. **State the Null Hypothesis H₀**
2. **State the Alternative Hypothesis Hₐ** (some texts use H₁)
3. **Specify the level of significance** Alpha (α)
4. **Decide whether the test is left-tailed, right-tailed, or two-tailed.**
5. **Calculate the Test Statistic** *(Use Z because n>30)*

 \[z = \frac{\hat{\theta} - \theta}{\sqrt{\frac{\theta(1-\theta)}{n}}} \]

6. **Find the P-value**
 - For a left-tailed test: \(P = \text{Area to the left of the test statistic} \)
 - For a right-tailed test: \(P = \text{Area to the right of the test statistic} \)
 - For a two-tailed test: \(P = \text{twice the area in the tail beyond the test statistic.} \)

7. **Make a decision to Reject or Fail to Reject H₀**
 Reject H₀ if the P-value ≤ α. Otherwise, fail to reject H₀

8. **Restate the Decision in Non-Technical Terms**
 Refer to Step 9 of the previous section (Rejection Region Method) for acceptable verbiage.
C. TI-83/84 METHOD

1. Determine the Null Hypothesis H_0, Alternative Hypothesis H_a, and Significance Level α

2. Press STATS

3. Select TESTS, then choose Option 5: 1-PropZTest

 a) Input: Data (Use if your data resides in lists on the calculator) or Stats (Use if you just have summary stats such as σ and μ)

 Sample Data

 b) Enter Null Hypothesis value ρ_0 .078
 c) Enter x (# of successes) 46
 d) Enter sample size n 821
 e) Enter alternative hypothesis $\rho > \rho_0$

 ![TI-83/84 Screen Shot 1-PropZTest]

 f) Press Calculate

 ![TI-83/84 Screen Shot 1-PropZTest]

 Interpretation from above TI-83/84 screen shots:

 1. **P test:** $P = .99$

 If α is .05, then $P > .99 > \alpha$, which means **do not reject** the null.

 2. **Rejection Region Method:** For right-tailed test, the critical value is +1.645 for a significance level of .05. Since $z = -2.348 < 1.645$, it is **not** in the rejection region, so **do not reject** the null.
Sample Exercise

Sample size = 1,234; # of defectives x = 20; α = .05. Test the claim that there is a 1% error rate.

<table>
<thead>
<tr>
<th>Rejection Region Method</th>
<th>P-Value Method</th>
<th>TI-83/84 Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Null: (\hat{p} = .01)</td>
<td>Null: (\hat{p} = .01)</td>
<td>Null: (\hat{p} = .01)</td>
</tr>
<tr>
<td>Step 2: Alternative: (p \neq .01)</td>
<td>Alternative: (p \neq .01)</td>
<td>Alternative: (p \neq .01)</td>
</tr>
<tr>
<td>Step 3: (\alpha = .05)</td>
<td>(\alpha = .05)</td>
<td>(\alpha = .05)</td>
</tr>
</tbody>
</table>
| **Step 4**: Critical Values: \(Z = \pm 1.96 \) | Test Statistic \[
Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}
\]
| Press STATS, Select TESTS, then choose first Option 5: T-Test |
| \[
Z = \frac{0.16 - 0.01}{\sqrt{\frac{0.01 * 0.99}{1234}}} = 2.19
\] | \[
1 - \text{PropZTest}
\hat{p} = .01
x = 20
n = 1234
\] |
| **Step 5**: Test Statistic \[
Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} = 2.19
\] | For a two-tailed test, \(P \) is twice the area in the tail of the test statistic. Z = +2.19 corresponds to a tail of 1-0.9857 = 0.0143. Therefore \(P = 2(0.0143) = 0.0286 \) |
| Press ‘Calculate’: |
| \[
1 - \text{PropZTest}
\hat{p} = .01
x = 20
n = 1234
\] |
| **Step 6**: Since \(Z = 2.19 \) is in the rejection region (> +1.96; see Step 4), the decision is to reject the null. | Since \(P < \alpha \); i.e., .0316 < .050, the decision is to reject the null. | Reject the null for one of two reasons: |
| Press ‘Calculate’: |
| \[
1 - \text{PropZTest}
\hat{p} = .01
z = 2.191561147
p = .028411098
1 - \text{PropZTest}
\hat{p} = .01
z = 2.191561147
p = .028411098
1 - \text{PropZTest}
\hat{p} = .01
z = 2.191561147
p = .028411098
\] | 1. \(P < .05 \) (.0284 < .05) |
| 2. \(Z = +2.19 \), which is more than +1.96 (therefore it is in the rejection region) |

Testing a Claim About a Proportion

Document created by South Campus Library Learning Commons 03/26/10. Permission to copy and use is granted for educational use provided this copyright label is displayed.