Derivatives and Graphs

PURPOSE
As we know that, the derivatives can tell us a great deal about the shape of the graph of a function. This handout is designed to help the student analyzing the graph by finding maximum or minimum values and concavity of the graph.

Critical Values of Function f :
The values of c in the domain of f where f '(c) =0 or f ' (c) does not exit ,are called the critical values of f.
The critical values of f are always partition numbers of f ‘ , but f ‘ may have partition numbers that are not critical values.

Increasing and Decreasing Functions:
For the interval (a, b)
If f ‘ (x) > 0 function f increases in that interval.
f ‘ (x) < 0 function f decreases in that interval.

First Derivative test for Local Extrema :
Let c be a critical value of f
If f ’(x) changes from negative to positive at c then f (c) is a local minimum.

f ’ (x)

x

Document created by South Campus Library Learning Commons 03/01/14. Permission to copy and use is granted for educational use provided this copyright label is displayed.
If \(f'(x) \) changes from positive to negative at \(c \) then \(f(c) \) is a local maximum.

\[
\begin{align*}
\text{f'(x)} & \quad \begin{array}{c}
+++
\end{array} & \quad \begin{array}{c}
-
\end{array} \\
(& \quad a & \quad c & \quad b & \quad x
\end{align*}
\]

If \(f'(x) \) does not change sign at \(c \) then \(f(c) \) is neither a local maximum nor a local minimum.

\[
\begin{align*}
\text{f'(x)} & \quad \begin{array}{c}
+++
\end{array} & \quad \begin{array}{c}
+++++
\end{array} \\
(& \quad a & \quad c & \quad b & \quad x
\end{align*}
\]

\[
\begin{align*}
\text{f'(x)} & \quad \begin{array}{c}
-
\end{array} & \quad \begin{array}{c}
-
\end{array} \\
(& \quad a & \quad c & \quad b & \quad x
\end{align*}
\]

Inflection Points of Function f:

The value of \(c \) in the domain of \(f \) where \(f''(c) \) does not exist are called the inflection points of \(f \).

A partition number \(c \) for \(f'' \) produces an inflection point for the graph of \(f \) only if

1. \(f''(x) \) changed sign at \(c \) and
2. \(c \) is in the domain of \(f \)
Concavity of the Function f:

For the interval (a, b)

If $f''(x) > 0$ Graph concave upward

If $f''(x) < 0$ Graph concave downward

Second Derivative Test for Local Maxima and Local Minima:

Let c be a critical value for f

If

$f'(c) = 0 \quad f''(c) > 0 \quad f(c)$ is local minimum

$f'(c) = 0 \quad f''(c) < 0 \quad f(c)$ is local maximum

$f'(c) = 0 \quad f''(c) = 0 \quad$ Test fails

The first derivative test must be used whenever $f''(c) = 0$ or $f''(c)$ does not exist.
$f''(x) > 0 \quad \Rightarrow \quad f(x) \text{ Concave up}$

$f''(x) < 0 \quad \Rightarrow \quad f(x) \text{ concave down}$

$x = 0 \quad \text{Inflexion point}$

$f''(3) < 0 \quad \Rightarrow \quad \text{Maximum}$

$f''(3) > 0 \quad \Rightarrow \quad \text{Minimum}$