Orthogonal Trajectories: When all the curves in a family $G(x, y, c_1) = 0$ intersect orthogonally all the curves in another family $H(x, y, c_2) = 0$, the families are said to be orthogonal trajectories of each other.

$dy/dx = f(x, y)$ is the differential equation of one family, then the differential equation for the orthogonal trajectories of this family is $dy/dx = -1/f(x, y)$

Example

Find the orthogonal trajectories of $c_1x^2 + y^2 = 1$

If $G(x, y, c_1) = 0$ represents a family of curves, then $dy/dx = f(x, y)$ where $f(x, y) = -\frac{\partial G}{\partial x} / \frac{\partial G}{\partial y}$ represents the slope of the family of curves $G(x, y, c_1)$.

$dy/dx = -\frac{2c_1x}{2y} = -\frac{c_1x}{y}$ where $c_1 = \frac{1-y^2}{x^2}$ (solved $c_1x^2 + y^2 = 1$ for c_1) therefore

$$dy/dx = -\frac{(1-y^2)x^2}{y^3} = -\frac{(1-y^2)}{xy}$$

We are looking for a family of curves orthogonal to G which means that the slope of these curves will be equal to the negative reciprocal of the slope of the original family.

For $H(x, y, c_2)$

$$dy/dx = \frac{xy}{1-y^2}$$

Solving this new (separable) differential equation will yield a family of curves $H(x, y, c_2)$ orthogonal to the original family $G(x, y, c_2)$.

Separating variables and integrating yields

$$\int \frac{1-y^2}{y} dy = \int x dx$$

$$\ln|y| - \frac{1}{2}y^2 = \frac{1}{2}x^2 + c_2$$
Mixing Problems

Let \(x(t) \) = the amount of substance in the tank at any given time \(t \).

\[
\frac{dx}{dt} = \left[\text{rate in} \right] - \left[\text{rate out} \right]
\]

\[
\frac{dx}{dt} = \left[\frac{a \text{ units of substance}}{\text{volume of solution}} \cdot \frac{b \text{ volume}}{\text{time}} \right] - \left[\frac{x(t) \text{ units}}{f + (b-c) \text{ volume}} \cdot \frac{c \text{ volume}}{\text{time}} \right]
\]

where \(x(0) = g \)

Example

A brine solution with a concentration of .8kg/gal is pumped into a tank at a rate of 6 gallons per minute. The tank initially holds 500 kgs of salt dissolved in 1000 gallons of solution. What is the amount of salt in the tank after \(t \) minutes if the solution is also leaking out of the tank at a rate of 0.2 gal/min?

\[
\frac{dx}{dt} = \left[\frac{8 \text{ kg}}{\text{gal}} \cdot \frac{6 \text{ gal}}{\text{min}} \right] - \left[\frac{x(t)}{1000 + (6-0.2)t} \cdot \frac{0.2 \text{ gal}}{\text{min}} \right]; \quad x(0) = 500
\]

\[
\frac{dx}{dt} = 4.8 - \frac{0.2x}{1000 + 5.8t} \quad \text{or} \quad \frac{dx}{dt} + \frac{0.2}{1000 + 5.8t} x = 4.8 \quad x(0) = 500
\]

Solving:

\[
e^{0.2 \int_{1000+5.8t}^{1000+5.8t} dt} = e^{0.0345 \ln |1000 + 5.8t|} = (1000 + 5.8t)^{0.0345}
\]

\[
x(1000 + 5.8t)^{0.0345} = 4.8 \int (1000 + 5.8t)^{0.0345} dt
\]

\[
x = 0.8(1000 + 5.8t) + (1000 + 5.8t)^{-0.0345} c
\]

For \(x(0) = 500 \) \(c = -380.73 \)

So \(x = 0.8(1000 + 5.8t) - 380.73(1000 + 5.8t)^{-0.0345} \)
Spring Problems

A mass \(m \) is placed on a spring stretching it a distance \(x_1 \). The entire spring-mass system is then immersed in a substance giving the system a damping force with a damping constant \(\beta \). The motion of the system is driven by an external force \(E(t) \). If the spring is stretched initially by a distance \(s_0 \) and then released with initial velocity \(v_0 \), set up a DEQ that models this system.

DEQ: \(m x'' + \beta x' + kx = E(t); \quad x(0) = s_0, \ x'(0) = v_0 \)

where \(k \) is the spring constant and if not given can be calculated using \(k = \frac{mg}{x_1} \) by Hooke’s Law (Note: \(g \) is the gravitational constant and on Earth \(g \approx 9.8 \text{ N/kg} \))

Example

A 2-kilogram mass is attached to a spring whose constant is 16 n/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equation of motion if the mass is released 1 meter below the equilibrium position with a downward velocity of 12 m/s.

Write out what is given:

\[
\begin{align*}
m &= 2 \text{ kg} \quad & v_0 &= 12 \text{ m/s} \\
\beta &= 10 \text{ N/(m/s)} \quad & s_0 &= 1 \text{ m} \\
k &= 16 \text{ N/kg} \quad & \text{ } \text{ } \\
E(t) &= 0 \\
\end{align*}
\]

Write out the DEQ:

\(2x'' + 10x' + 16x = 0 \); \(x(0) = 1 \), \(x'(0) = 12 \)

Solve DEQ:

\[
2m^2 + 10m + 16 = 0
\]

\[
m = \frac{-10 \pm \sqrt{28}}{2} = -5 \pm i
\]
Solution:
\[y = e^{-5t} [c_1 \cos(\sqrt{7}t) + c_2 \sin(\sqrt{7}t)] \]

since \(x(0) = 1, \quad c_1 = 1 \)
and \(x'(0) = 12, \quad c_2 = \frac{17}{\sqrt{7}} \)

Note: Using the following trig relationships we can represent the solution as a single term.

For a solution of the form \(y = e^{at}[c_1 \cos(bt) + c_2 \sin(bt)] \)
let \(A^2 = c_1^2 + c_2^2 \) and \(\Phi = \tan^{-1}(c_1/c_2) \)

Then \(y = e^{at}[A \sin(bt + \Phi)] \)

Solution in single term form:
\[y = e^{-5t}[A \sin(\sqrt{7}t + \Phi)] \]

where \(A = \sqrt{1^2 + \left(\frac{17}{\sqrt{7}}\right)^2} = \frac{2\sqrt{518}}{7} = 6.5027 \)
and \(\Phi = \tan^{-1}\left(\frac{\sqrt{7}}{17}\right) = 0.15439 \)