Simple Interest

Interest = principal \times rate \times time

\[i = prt \]

Compound Interest Formula

\[A = p \left(1 + \frac{r}{n} \right)^{nt} \]

where \(A \) (Future Value) is the amount after time \(t \), \(p \) is the principal (Present Value), \(r \) is the annual rate of interest, and \(n \) is the number of compounding periods per year.

\[
\text{Present Value} = \frac{\text{Future Value}}{(1 + \frac{r}{n})^{nt}}
\]

Effective Annual Yield (Annual Percentage Yield – APY) – the equivalent simple interest rate that gives the same amount of interest as a compound rate over the same period of time.

For compounding period \(n \) (note \(n \) is often daily and 360 is used by banks)

\[APY = \left(1 + \frac{r}{n} \right)^n - 1 \]

Annuity

\[
S = \frac{R \left[\left(1 + \frac{r}{n} \right)^{nt} - 1 \right]}{\frac{r}{n}}
\]

where \(S \) is the value (future value) of the annuity after \(t \) years and \(R \) is the amount invested each period.
Fixed Installment Loans

Amount financed = Cash price – Down payment

Total installment price = Total of all monthly payments + Down payment

Finance charge = Total installment price – Cash price

Annual Percentage Rate – applies to interest owed per year on loans. (vs. Effective Annual Yield which is annual interest earned on an investment.)

<table>
<thead>
<tr>
<th>Numbers of payments</th>
<th>Finance Charge per $100 of amount finance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.00%</td>
</tr>
<tr>
<td>6</td>
<td>1.17</td>
</tr>
<tr>
<td>12</td>
<td>2.18</td>
</tr>
<tr>
<td>18</td>
<td>3.2</td>
</tr>
<tr>
<td>24</td>
<td>4.22</td>
</tr>
<tr>
<td>36</td>
<td>6.29</td>
</tr>
<tr>
<td>60</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Using Table to Find APR

1) Compute finance charge per $100 financed

\[
\text{Finance charge per$100} = \frac{\text{Finance charge}}{\text{Amount financed}} \times $100
\]

2) Find the value closest to the finance charge per $100 you calculated in step 1)

3) Look at the associated APR at the top of the column.

Example: A truck priced at $12,500 is financed after a $1000 dollar down payment is made. A monthly payment of $229 over 5 years is established. What is the APR for this loan?

Solution:

Cash price = $12,500,
Down payment = $1000,
Total monthly payment = $5(12) \times $229 = $13,740

Amount financed = $12,500 - $1000 = $11,500

Total installment price = $13,740 + $1000

Finance charge = $14740 - $12,500 = $2240

1) Finance charge per $100 financed

\[
\frac{2240}{11,500} \times 100 = 19.48
\]

2) For 5(12) = 60 monthly payments, 18.81 is the closest value in the table.

3) Therefore, the APR is about 7.0%
Unearned Interest – The interest saved by paying off the loan early.

Actuarial Method

\[u = \frac{kRV}{100+V} \]

- **u** – unearned interest
- **k** – remaining number of scheduled payments (excluding current payment)
- **R** – regular monthly payment
- **V** – finance charge per $100 (from the APR table) for a loan with the same APR and **k** monthly payments

Rule of 78

\[u = \frac{k(k+1)}{n(n+1)} \times F \]

- **n** – original number of payments
- **F** – original finance charge

Monthly Mortgage Payments

\[PMT = PV \left(\frac{\frac{r}{n}}{1 - \left(\frac{1 + \frac{r}{n}}{n}\right)^{-nt}} \right) \]

where **PV** is the present value, **r** the annual rate, **n** the number of payments per year, **t** the number of years for the mortgage, and **PMT** the amount of the payment.